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Mechanical properties of high-density powder metallurgy (PM) steels have been evaluated using standard
tests, and a theoretical model using the artificial neural network (ANN) has been developed. Various heat
treatments were carried out to study their influence on mechanical properties, viz. endurance limit (EL),
yield strength (YS), and hardness, and also on the carbon content in PM steel. The material containing
0.47% C that was quenched and tempered at 503 K (QT 503 K) showed the optimum combination of
yield strength/ultimate tensile strength (YS/UTS) and EL. The ANN-based model showed excellent agree-
ment with experimental results. Prediction models based on the ANN are demonstrated for YS as well as
for the EL as a function of heat treatment (ranging from QT 400 K to QT 900 K) and percent carbon
(%C) (between 0.1 and 0.5). This would help the materials engineer suitably design the heat-treatment
schedule to obtain the desired/best combination of fatigue and strength properties.

seems justified. For a better understanding of the fatigueKeywords artificial neural network, endurance limit, heat
response of PM materials, it is necessary to consider theirtreatment, microstructure, PM steel, yield

strength specific microstructure.[1,4] The aim of this investigation, there-
fore, is to evaluate the fatigue property of a high-density Fe-
2% Ni based PM steel under different heat-treated conditions.1. Introduction The fatigue property of this material was evaluated using a
rotating bending fatigue test at room temperature. Fe-2% Ni

The powder metallurgy (PM) route offers the advantage based PM materials are being developed for use, especially in
of manufacturing near-net-shaped components at lower cost. automobile industries (for crankshafts, camshafts, and other
Continued research efforts have resulted in a number of moving parts). Successful application of this material would
advanced PM materials with an optimum combination of prop- result in a significant reduction in cost apart from energy
erties for various service conditions. During the last few savings.
decades, the demand for lower production costs and the reduc- There has been no published literature available on the ana-
tion of weight resulted in the use of PM iron and PM steel for lytical prediction model for mechanical properties of PM steels.
highly stressed, fatigue-loaded components. The production of The artificial neural network (ANN) can be effectively used to
near-net shape at lower cost, with a reduction in metal scrap, develop models to analyze and predict mechanical properties
and environmentally cleaner processes (e.g., less/no need for of materials. Neural computing is a relatively new field of
cutting fluid and less energy consumption) are the distinct artificial intelligence, which tries to mimic the structure and
advantages over conventionally produced components.[1] The

operation of biological neural systems, such as the human brain,
demand for lower production costs in the automotive and tool

by creating an (ANN) on a computer. These ANNs are modelingindustries, resulted in the use of PM materials even for highly
techniques that are especially useful in addressing problemsstressed, fatigue-loaded components (connecting rods, cam-
for which solutions are not clearly formulated[5] or for whichshafts, parking gears, etc.), which are produced by PM route
the relationships between inputs and outputs are not sufficientlyon a large scale.[2] The fatigue behavior of cast and wrought
known. The ANNs have the ability to learn by example. Patternsmaterials has been summarized in numerous publications.[2,3]

in a series of input and output values of example cases areHowever, the influence of high-density (,2% porosity) struc-
recognized. This acquired “knowledge” can then be used byture, with varying heat treatments/microstructure, on the cyclic
ANN to predict unknown output values for a given set of inputproperties still requires further investigation. Furthermore,
values. Alternatively, ANNs can also be used for classification.about 80% of fatigue-exposed PM materials in current use are
In this case, the ANN’s output is a discrete category to whichPM iron/steels so that a special emphasis on ferrous PM material
the item described by the input values belongs. The ANNs are
composed of simple interconnected elements called processing
elements (PEs) or artificial neurons that act as microprocessors.
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Table 1 Mechanical properties of PM steel

Sol. Heat YS UTS % Hardness % EL %
no. treatment (MPa) (MPa) El. (HRC) Porosity (MPa) C

1 AN 289 502 17 7 134
2 QT 503 K 1044 1174 12 45 316
3 QT 588 K 969 1052 14 40 1.84 290 0.13
4 QT 700 K 942 981 18 35 260
5 QT 810 K 772 817 24 30 218
1 AN 380 614 15 7 152
2 QT 503 K 1332 1539 10 43 339
3 QT 588 K 1214 1346 11 40 1.86 304 0.24
4 QT 700 K 1042 1145 12 33 276
5 QT 810 K 918 994 13 29 240
1 AN 531 690 9 7 160
2 QT 503 K 1408 1628 5 44 348
3 QT 588 K 1263 1442 5 40 1.84 317 0.36
4 QT 700 K 1083 1180 7 33 294
5 QT 810K 938 1035 11 28 269
1 AN 573 773 15 8 165
2 QT 503 K 1497 1801 4 46 360
3 QT 588 K 1352 1487 5 41 1.84 330 0.47
4 QT 700 K 1118 1221 6 35 312
5 QT 810 K 987 1090 12 31 283

the output. Synapses are mimicked by providing connection
weights between the various PEs and transfer functions or
thresholds within the PEs. One of the most popular neural
network models is the back-propagation network. Currently,
back-propagation is the most popular, effective, and easy to
learn model for complex networks. To develop a back-propaga-
tion neural network, a developer inputs known information,
assigns weights to the connections within the network architec-
ture, and runs in the networks repeatedly until the output is

Fig. 1 (a) Optical microstructure of AS sample, revealing bainiticsatisfactorily accurate. The weighted matrix of interconnections
structure. (b) Optical microstructure of QT sample, showing temperedallows the neural networks to learn and remember.[6]

martensitic structure

2. Material, Heat Treatment, and Experimental
model UTM machine of capacity 100 kN. At least four speci-Procedure
mens were tested for each heat treatment and the results are
the average values.2.1 Material

The sintered bars were machined to form fatigue test speci-
Four Fe-2% Ni based PM steels (Table 1) were used in the mens with 5 mm gauge diameter and 20 mm gauge length

present investigation, having percentages of carbon as of 0.13, having a continuous radius. After turning, the portion of the
0.24, 0.36, and 0.47. Fe-2% Ni based PM powder was produced specimen having a continuous radius was polished to get a
by the atomization process to obtain powders of size less than mirror-finish. This was done to avoid the most likely influence
10 mm. The green powder was sintered under vacuum at 1473 of surface roughness on fatigue strength. Fatigue testing was
K. Nickel addition was made using a liquid-phase-sintering carried out on a rotating bending fatigue-testing machine of
technique. capacity 6 Newton-Meter, at a frequency of 50 Hz and at room

temperature. The tests were carried out up to 107 cycles to
2.2 Heat Treatment determine the endurance limit (EL). At least four specimens

were tested to confirm the EL for each heat treatment.The material Fe-2% Ni based PM steel, was subjected to
five different heat treatments. They are annealed at 1473 K
(designed as “AN”), quenched and tempered (QT) at 503 K,

3. Test Results and DiscussionQT at 588 K, QT at 570 K, and QT at 810 K, in a vacuum-
controlled muffle furnace.

3.1 Influence of Heat Treatment on Microstructure2.3 Tensile and Fatigue Tests

Tensile tests were carried out per ASTM standard E-9, on The typical optical microstructures of the material in the as-
sintered and QT conditions are shown in Fig. 1(a) and (b),a microprocessor-controlled Instron-8032 (Instron Inc., USA)
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Fig. 2 (a) Fractographic features of AS sample, indicating cleavage (b)
facets along with dimples. (b) Fractographic features of QT 503 K

Fig. 3 (a) Experimental investigation—variation of YS as a functionsample, showing large density of dimple structure typical of ductile
of heat treatment and %C content. (b) Experimental investigation—fracture
variation of tensile strength as a function of heat treatment and %C
content

respectively. Typical SEM fractographs for the same are shown
in Fig. 2. Figure 2(a) reveals cleavage facets in addition to trend, which, of course, is due to the softening of the material
dimples, whereas Fig. 2(b) shows the presence of a large number with increasing tempering temperatures. Furthermore, YS,
of dimples typical of ductile fracture. These fractographic fea- UTS, and hardness values increased (for any given heat treat-
tures, as can be seen, are reminiscent of their microstructures. ment) with an increase in percent carbon (%C) content in the
Bainitic structure, with its needlelike morphology, is known to material. As is well known, a high carbon tempered martensite
offer easy paths for crack initiation and propagation as compared structure, being tougher and stronger, contributed to improved
to the predominantly circular/round morphologies of carbon in tensile properties.
ferrite (tempered martensite structure) of the heat-treated
structure. 3.3 Dependency of EL on Heat Treatment and Carbon

Content
3.2 Influence of Heat Treatment on Tensile Properties Figure 4 represents the variation of experimentally observed

EL as a function of heat treatment and carbon content. The ELFigure 3(a) and (b) demonstrate the influence of heat treat-
ment on yield strength (YS) and ultimate tensile strength (UTS), generally decreased with an increase in the tempering tempera-

ture. The heat treatment “QT 503 K” with 0.47% C recordedrespectively, for high density Fe-2% Ni based PM steel, having
carbon content between 0.13 and 0.47%. Quite expectedly, it the maximum EL among all four materials discussed in this

paper. This is attributed to the most effective crack initiationmay be observed that YS and UTS decreased with the increase
in tempering temperature at all carbon levels, being least for and crack propagation resistance offered by the microstructure

containing tougher, high-carbon-tempered martensite.annealed sample. Elongation of the material showed the reverse
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Fig. 4 Experimental investigation—influence of heat treatment and
%C on EL

4. Proposed ANN Model Development
Methodology

Back-propagation networks are most useful for problems
involving forecasting and pattern recognition. Back-propaga- (b)
tion training is one of the most popular methods for training

Fig. 5 (a) Three layer jump connections. (b) Four layer jumpANNs with back-up/historical data. “NeuroShell 2” software
connectionsby Ward Systems Group, Inc. (Frederick, MD) was used in the

present analysis to implement back-propagation training. In
essence, back-propagation training adapts a gradient-descent Fig. 5(a) and (b), respectively. In this type of network architec-
approach to adjusting the ANN weights. During training, an ture, every layer (slab) is connected or linked to every previous
ANN is presented with the data of thousands of times (called layer. The input parameters, heat treatment (QT) and %C, and
cycles). After each cycle, the error between the ANN outputs output, YS, were stored in slabs 1, 2, and 3, respectively, for
and the actual outputs is propagated backward to adjust the the first model. The input parameters, QT, %C, YS, and output
weights in a manner that is mathematically guaranteed to parameter, EL, were stored in slabs 1, 2, 3, and 4, respectively,
converge.[6]

for the second model. The number of hidden neurons, for which
the Gaussian activation function, {exp (2x2)} was determined
according to the following formula:[7]

4.1 Training ANN Model

number of hidden neurons 5 0.5 (inputs 1 outputs)The major property that deems ANNs’ superiority to algo-
rithmic and other network-based systems is their ability to

1 !(number of training patterns)
be trained on historical information as well as real-time data.
Training is the act of continuously adjusting their connection Given the properties of the training data used, 2 inputs, 1 output,
weights until they reach unique values that allow the network and 16 training patterns, the number of processing elements
to produce outputs that are close enough to the desired outputs. was determined to be 6. The other network parameters were
The accuracy of the developed model, therefore, depends on set as follows:
these weights. Once optimum weights are reached, the weights
and biased values encode the network’s state of knowledge. learning rate: 0.10
Thereafter, using the network on new cases is merely a matter

momentum: 0.10of simple mathematical manipulation of these values.

initial connection weights: 0.30

4.2 Neural Network Architecture Used learning stopping criteria: 20,000 epochs

The neural network used for the proposed model was devel-
4.3 System Performanceoped with NeuroShell 2 software, using a back-propagation

architecture with three layers (for the first model) and four The neural network used for the presented model demon-
strated an excellent statistical performance,[7] as shown in Tablelayer jump connections (for the second model), as shown in
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2 for the training model and the evaluation of the trained model. where SSE 5 S(y 2 y)2, SSyy 5 S( y 2 y)2, y is the actual
value, y is the predicted value of y, and y is the mean of theIn Table 2, R squared is a statistical indicator usually applied

to multiple regression analysis. It compares the accuracy of the y values.
The correlation coefficient, r, is a statistical measure of themodel to the accuracy of a trivial benchmark model, wherein

the prediction is just the mean of all of the samples. A perfect strength of the relationship between the actual versus predicted
outputs. The r coefficient can range from 21 to 11. It willfit would result in an R-squared value of 1, a very good fit

near 1, and a very poor fit near 0. The following formulas[7] show a stronger positive linear relationship when r is closer to
11, and a stronger negative linear relationship when r is closerwere used to calculate R squared:
to 21. The following formulas[7] were used to calculate r:

R2 5 1 2 (SSE/SSyy)
r 5 SSxy /=(SSxxSSyy)

Table 2 Network system performance where

Statistical Network training Network training
SSxy 5 (xy 2 (l/n){((x)((y)}indicator (model 1) (model 2)

SSxx 5 (x2 2 (l/n)((x)2
R squared 0.9891 0.9896
r squared 0.9893 0.9896

SSyy 5 (y2 2 (1/n)((y)2
Correlation coefficient, r 0.9946 0.9375

(a) Fig. 7 ANN model predicted YS vs %C for QT 400 K through QT
900 K

(b)

Fig. 6 (a) Actual (experimental) and network YS vs training data
pattern numbers. (b) Actual (experimental) and network EL vs training Fig. 8 ANN model predicted EL vs %C for QT 400 K through QT

900 Kdata pattern numbers
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where n equals the number of patterns, x refers to the set of 5. Conclusions
actual outputs, and y refers to the predicted outputs.

Figure 6(a) and (b) represent the graphical comparisons The tensile properties and EL of Fe-2% Ni based PM steel
between the actual experimental data and the network-predicted were found to be sensitive to heat treatment. The sample con-
output for YS and EL, respectively. It clearly demonstrates an taining 0.47% C, which was QT at 503 K, exhibited the best
excellent statistical performance. combination of fatigue and strength properties. The ANN-based

model showed excellent agreement with experimental results.
The ANN model can reduce the experimental efforts, which
otherwise takes long hours of a tedious and complex fatigue
test procedure. The ANN prediction model results (especially4.4 Prediction Model
the fatigue property and EL) can be used as a “reference chart

From Table 1 (experimental results), it may be observed of data.” The application of ANN becomes highly significant
that the EL varied between 218 and 360 MPa for different heat and beneficial in designing an optimum heat-treatment schedule

to obtain the desired/best EL. The presently investigated Fe-treatments as a function of carbon content. At the outset, EL
2% Ni based PM steel is found to have a good potential to beseems to be influenced directly by the increase in carbon content
used as a fatigue-loaded component.for a given tempering temperature. The prediction model for

YS as a function of %C is presented in Fig. 7. The YSs were
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